軟件層面,在語言層面上,ZK更友好的格式,也會帶來加速生成的過程,比如Aleo的Leo語言。再就是算法本身的優(yōu)化,雖然說有一定的優(yōu)化空間,但是要想有大的突破需要非常多的時間,畢竟牽涉到很多數學問題。
目前零知識證明(ZKP)應用的主要2個方向:隱私和可驗證計算,Aleo是隱私L1公鏈,同時兼具可編程性,像ZCash等雖然也是隱私公鏈,但是不具備可編程性。以太坊L2上的ZK-Rollup項目,屬于可驗證計算,我們之前的文章也分析過:重磅分析!為什么說FPGA或者ZK通用服務器在Aleo項目上機會是零?,在證明的需求量上完全不是一個級別。
按照官方的設想和規(guī)劃未來在Aleo上每天的交易量都是上億美金的規(guī)模,在這樣大數據量的要求下,每時每刻都有證明需要被委托出去在極短的時間內完成證明的生產,不可能指望顯卡能解決這個問題。就像AI大模型訓練一樣,早期數據量和參數少的情況下可以用消費級顯卡,但是現在更多的都是為AI訓練設計的專用芯片和機器。
芯片的硬件指的是運行指令的物理平臺,包括處理器、內存、存儲設備等等。芯片數據中常出現的“晶體管數量”、“7nm制程”、“存儲”等,往往指的就是硬件參數。
軟件則包括固件、驅動程序、操作系統、應用程序、算子、編譯器和開發(fā)工具、模型優(yōu)化和部署工具、應用生態(tài)等等。這些軟件指導硬件如何響應用戶指令、處理數據和任務,同時通過特定的算法和策略優(yōu)化硬件資源的使用。芯片數據中常出現的“x86指令集”、“深度學習算子”、“CUDA平臺”等,往往指的就是芯片軟件。
